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a b s t r a c t 

Predictive regression models aim to find the most accurate solution to a given problem, often without 

any constraints related to the model’s predicted values. Such constraints have been used in prior re- 

search where they have been applied to a subpopulation within the training dataset which is of greater 

interest and importance. In this research we introduce a new setting of regression problems, in which 

each instance can be assigned a different constraint, defined based on the value of the target (predicted) 

attribute. The new use of constraints is taken into account and incorporated into the learning process, 

and is also considered when evaluating the induced model. We propose two algorithms which are mod- 

ifications to the regression boosting method. There are two advantages of the proposed algorithms: they 

are not dependent on the base learner used during the learning process, and they can be adopted by 

any boosting technique. We implemented the algorithms by modifying the gradient boosting trees (GBT) 

model, and we also introduced two measures for evaluating the models that were trained to solve the 

constraint problems. We compared the proposed algorithms to three baseline algorithms using four real- 

life datasets. Due to the algorithms’ focus on satisfying the constraints, in most cases the results showed 

significant improvement in the constraint-related measures, with just a minimal effect on the general 

prediction error. The main impact of the proposed approach is in its ability to derive a model with a 

higher level of assurance for specific cases of interest (i.e., the constrained cases). This is extremely im- 

portant and has great significance in various use cases and expert and intelligent systems, particularly 

critical systems, such as critical healthcare systems (e.g., when predicting blood pressure or blood sugar 

level), safety systems (e.g., when aiming to estimate the distance of cars or airplanes from other objects), 

or critical industrial systems (e.g., require to estimate their usability along time). In each of these cases, 

there is a subpopulation of all instances that is of greater interest to the expert or system, and the sen- 

sitivity of the model’s error changes according to the real value of the predicted feature. For example, 

for a subpopulation of patients (e.g., patients under the age of eight, or patients known to be at risk), 

physicians often require a sensitive model that accurately predicts blood pressure values. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this research we introduce a new class of machine learn-

ng problems in which each instance can be assigned a different

onstraint defined based on the value of the target (predicted) at-

ribute. We focus specifically on regression problems. Two exam-

les of instance constraints in such problems include: (i) all pre-

icted values of a specific population in the training set should be

bove or below a given threshold (e.g., for a model that predicts

 person’s blood pressure, as in Sideris, Kalantarian, Nemati, and

arrafzadeh (2016) , we might want to constrain the predicted val-
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es of a sub population to be higher than a specific value, due to a

nown medical condition affecting this subpopulation); or, (ii) all

rediction errors of a specific population in the training set should

e in the range of [-0.1, 0.1] (i.e., the interval doesn’t necessarily

ave to be balanced between the positive and negative errors). A

ew real-life use cases involving such constraints include: 

1. Semiconductor company prediction process . In this case, which

was provided by a real industrial company, each instance repre-

sents a chip in a production line, and the aim of the regression

model is to predict the chip’s power consumption value in the

very early phases of the production process. Since units with

a very high power consumption value will not function as re-

quired (and hence should not be sold), we wish to constrain the

error among this subpopulation. In addition, we are much more

sensitive to under prediction rather than over prediction, since

https://doi.org/10.1016/j.eswa.2019.03.011
http://www.ScienceDirect.com
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in the former case the company might end up selling chips that

that consume too much power (since the prediction was lower

than the true value), and the units may not function properly. 

2. Alcohol level prediction . For a model that attempts to predict the

level of alcohol in a person’s blood by analyzing various sen-

sors’ data (e.g., accelerometer sensor in a smartwatch), as was

explored in Nassi, Rokach, and Elovici (2016) , we may want to

define tight constraints on the instances with high alcohol lev-

els. The reason for this is to predict the values of such cases

more accurately, and thus, prevent a person from driving while

intoxicated. We might also want these constraints to be one-

sided, since it is better to over predict such cases rather than

under predict them (one-sided constraint configuration will be

explained in Section 4.1 ). 

3. Bid price prediction . For a model that predicts the suggested

prices to offer for items in different bids, we might want to

more accurately predict specific items (due to business needs).

In a standard bid, the highest offer wins everything, which

means any underprediction is irrelevant. In such a configura-

tion we would need to constrain specific items which we are

more interested in with a one-sided, overprediction constraint. 

4. Blood pressure prediction . When predicting a patient’s blood

pressure, as in Sideris et al. (2016) , the model may need to be

much more accurate for the prediction of extremely high/low

blood pressure values, since patients with such blood pressure

values are at greater risk. In such a configuration we would

need to constrain these extremely high/low blood pressure val-

ues to have a relatively low prediction error. 

5. Credit risk prediction . The credit risk prediction research area

Atiya (2001) which identify loans with a high risk of default.

Some of the algorithms in this domain are aimed at predict-

ing the total amount of money that will paid back per a given

amount of credit. In such cases, enabling the algorithms to ac-

curately predict the highest non refunded credits can be very

useful, since such credits are at the center of interest by the

financial institutes providing the loans. 

6. Cyber-physical systems . Prediction algorithms are one of the cen-

tral components of cyber-physical systems (CPSs) and Inter-

net of Things (IoT) platforms. As described in Li et al. (2011) ;

Sami Sivri and Oztaysi (2018) , in many cases, a regression

model provides ongoing predictions of environmental variables

(e.g., temperature, or distance of a car from the sidewalk) In

such cases, the model’s assurance is extremely important in

specific cases (e.g., when the temperature approaches extreme

values or when the distance between the car and the sidewalk

is too close), and a prediction model which takes instance level

constraints into account can allow the system to meet its most

sensitive prediction cases. 

The central motivation driving this research comes from prob-

lems like those mentioned above, in which two central factors

exist: (1) instances are not equally important, and (2) prediction

error is not balanced (either between instances or between over

and underprediction per instance). In such problems, the predic-

tion error function is very complex and requires an algorithm that

takes into account the prediction error per instance constraint. It

is our understanding that currently in such settings constraints

are usually taken into account more generally (as will be further

explained in Section A.7); however, these problems could benefit

from a new constraint definition in which constraints per instance

are applied. Currently, the general solution for these kinds of prob-

lems involves assigning weights to the constrained instances, thus

increasing their importance, and focusing the learning algorithm

on the constrained instances ( Carroll, 2017; Weisberg, 2005 ). How-

ever, there are two main drawbacks to such a solution: (1) it as-

signs a weight to all of the constrained instances, regardless of
hether the constraint can be easily satisfied by the model, and

2) it is not designed to consider cases in which (a) the predicted

alue of an instance may be very accurate but unable to meet the

esired (tight) constraint, or (b) the predicted value of an instance

an be relatively inaccurate but still meet the desired constraint. In

his manner, the constraints defined can introduce a new dimen-

ion in the machine learning domain - specifically, the extent to

hich a constraint is satisfied should be taken into account dur-

ng the learning process, as well as when evaluating the induced

odel. One of the proposed algorithms we present is inspired by

he AdaBoost algorithm, in which the importance of the instances

n the training set (i.e., weights) are determined in each iteration,

ot only by the prediction error, but also based on a new compo-

ent defined as the constraint satisfaction error. It should be noted

hat the use of the suggested algorithm will likely affect the gen-

ral prediction error metric (e.g., RMSE - Root Mean Square Error)

 consistent with the ‘no free lunch theorem’ in machine learn-

ng problems ( Wolpert, 1996 ). In general, the impact usually de-

ends on the percentage of instances constrained, the tightness of

he constraints, and the general hyperparameters used during the

earning process. 

Therefore, we summarize the main contributions of this re-

earch are as follows: 

• We introduce a new and generic concept of constraint learning

problems - the new concept adds another dimension of inter-

est to the problem definition. In previous cases, we were equally

concerned about instance level errors and were indifferent to

over/under prediction. The new concept takes these two aspects

into consideration when finding the most suitable solution to the

problem through instance level constraints defined as part of the

new problem settings. 
• We introduce a new setting of ML regression problems - this new

setting is a subset of the proposed general class of constraint

learning problems. It refers specifically to constraints defined

for the target attribute of regression problems. Such constraints

will allow us to build machine learning algorithms which aim

to satisfy the constraints and eventually force the learning pro-

cess to adapt the induced regression model to comply with

the defined instance level constraints, subsequently generating

a model with a higher level of assurance, since the model is

trained to provide more accurate results for the constrained and

more important cases. 
• We present a new regression algorithm - we propose, imple-

ment and evaluate a new variation of the gradient boosting

trees (GBT) algorithm, specifically designed to solve the con-

straint learning problem we introduced above. The new GBT-

based algorithm incorporates a novel component to the regu-

lar regression error component which is optimized through the

learning process. More specifically, we present two variations of

the GBT algorithm, each of which uses a different constraint er-

ror component (L1 norm-error or the step function error, as de-

scribed in Section 4.1 ) and discuss the differences in function-

ality and performance of the two proposed components. Note

that although the constraints are defined for each instance in-

dividually, it can eventually be derived from a more general and

broad definition of the constraint; for example, we would like

to have a specific error limit on the predicted blood pressure

for all patients under the age of 35 with a specific disease.

Although in this research we present a constraint regression

learning algorithm that is based on the GBT, the underlying re-

gression model can also be implemented using other (iterative

or gradient-based) regression methods, such as neural networks

regression models. 
• We propose new evaluation measures - as part of the prob-

lem definition, two unique measures for evaluating any
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implemented instance level constraint regression algorithm are

presented. Each measure calculates the satisfaction of the con-

straints differently and each can be relevant in different use

cases. These two measures are taken into account when evalu-

ating a solution along with standard regression measures (e.g.,

prediction error). 
• We created new code and made it available - all Python code de-

veloped as part of this research can be found in the project’s

GitHub repository. 1 

The rest of this paper is organized as follows. In Section 2 , we

riefly review relevant work in the field of constraint learning.

ection 3 is dedicated to background about boosting methods. In

ection 4 , we present the problem definition, relevant hyperparam-

ters, and objective metrics we wish to optimize. In Section 5 , we

resent the proposed algorithms. Sections 6 and 7 provide an in

epth description of the experiments we conducted and the results

e obtained. In Section 8 we present highlights of our analysis re-

ated to the algorithms’ results. Section 9 contains short discussion

bout few algorithm’s aspects and in Section 10 we summarize our

ork and presents future research options. 

. Related work 

Related work summary can be found in the Appendix section,

able A.7 . 

Various aspects of constraint learning have been discussed in

he literature. Related work that is relevant to our research can

e categorized as follows: (a) constraints that are defined for

he learning algorithm’s parameters, mainly in order to make

he training process more efficient, (b) instance level constraints

n fully/semi-supervised classification problems, (c) cost-sensitive

earning, and (d) special cases of regression problems. 

Category (a) includes previous research such as ( Hoerl and Ken-

ard (1970) ; Tibshirani (1996) ; Zhou, Tao, & Wu, 2011 ) which deals

ith constraints related to the algorithm parameters and explana-

ory features used. ‘Lasso’, ‘Ridge’, and Elastic Net regression mod-

ls are examples of cases in which the algorithm is limited to the

cope and format of the parameters that are used. Such settings al-

ow researchers to address overfitting problems, but they don’t in

ny way, handle instance level domain-specific constraints as sug-

ested in this research. 

Category (b) includes research such as DeSarbo and Maha-

an (1984) ; Klastorin and Watts (1981) which focuses on clas-

ification problems in which the constraints are associated with

he classes themselves (e.g., the size of a specific class must be

elow 100). In addition, semi-supervised problems are summa-

ized in Nguyen (2010) , including solution-based constraints. Most

f such semi-supervised problems are classification cases which

re largely solved with classification with pairwise constraints.

his problem definition was used in Zhang and Yan (2007) and

guyen and Caruana (2008) where some pairs of instances must

or must not) be classified to the same class. An additional re-

earch area which falls in category (b) is the field of prior knowl-

dge - Chang, Ratinov, and Roth (2008) and Yu, Jan, Simoff, and

ebenham (2007) solve classification problems through such a

rior knowledge approach. In both articles, prior knowledge allows

he hypothesis space, H , to be reduced to a size that does not sig-

ificantly violate prior knowledge. The evaluation measure is com-

osed of a standard prediction model and a measure which takes

iolations of the prior knowledge into account. Both articles deal

ith classification problems, and Yu et al. (2007) suggest a very

nteresting variant of SVM (i.e., VQSVM) which makes an improved

hoice of a kernel function based on prior knowledge. Note that
1 https://github.com/abrahami/Constraint-Learning . 

i  

s  

t  
he most recent problem definitions are classification oriented and

n that sense are different from this research direction, since we

eal with regression prediction problems. 

Category (c) includes research such as Koenker (2005) ;

hao, Sinha, and Bansal (2011) also related to our research. As de-

cribed in Zhao et al. (2011) , most research in the cost-sensitive

earning field is related to classification problems. However, the ar-

icle does mention a method for a least squares error model with

ost-sensitive aspects. The cost-sensitive aspect refers to the over-

rediction versus underprediction trade-off. The regression method

uggested in Zhao et al. (2011) can apply any given cost function

o a regression model. A linear cost function is a special case of

ost function which is solved via a quantile regression solution

oenker (2005) . Such a solution allows us to better control the

ver/under prediction sensibility, but it applies such sensibility to

ll data points in the learning dataset and restricts the cost func-

ion so it is convex. In our research, both limitations don’t explic-

tly exist since the cost-sensitive function comes in the form of an

nstance level constraint matrix. 

Category (d) includes research such as the model presented

y Coons (1978) which is another form of constraint regression

odel. The paper proposes a solution for cases in which some data

oints are considered more reliable than others (i.e., hard-points),

nd the solution fits these reliable data points exactly. The idea of

estricting some of the fitted data points is very similar to the di-

ection of our research, especially since both deal with regression

roblems, however two main differences exist: (1) the constraints,

s defined in the current research, are not necessarily the same as

he hard constraints referred to by Coons (1978) , and (2) the way

n which we solve the problem is based on an arithmetic solution

ather than a closed algebraic solution. 

Regression constraint problems are also mentioned in

arrell (2015) in the context of survival analysis where the

rue target value for some of the instances is down/up bounded

ut not fully known, meaning that the actual true value of some

05 instances in not known, which is different from our problem

etting. 

The simplest way to address constraints as we define them is

o weight the constrained instances higher than other instances

o the prediction algorithm will optimize the solution according

o the imbalance weighting policy. However, there are two main

rawbacks to a solution based on assigning weights to the con-

trained instances. First, such a solution assigns a weight to all of

he constrained instances, regardless of whether the constraint can

e easily satisfied by the model. Second, these solutions are not

esigned to consider cases in which the predicted value of an in-

tance may be very accurate but does not meet the desired (tight)

onstraint, or alternatively, cases in which the predicted value of

n instance is relatively inaccurate but still meets the desired con-

traint. We use this solution as a benchmark in our experiments,

urther described in Section 6.3 . 

Furthermore, none of the aforementioned research deals specif-

cally with constraints related to the continuous target attribute

iven as input for a regression model. In that sense, the problem

efinition and solution we suggest is novel and unique. 

. Background 

.1. Gradient Boosting Trees 

The Gradient Boosting Trees (GBT) algorithm serve as the base-

ine in this research. This algorithm is an information-theoretical

iscriminative predictor. A series of weak learners (decision trees)

s constructed, boosting regression accuracy by combining the re-

pective learner Friedman (2002) ; Schapire (1990) . GBT classifiers

end to work well on a broad range of datasets; they also work

https://github.com/abrahami/Constraint-Learning
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Table 1 

Notations of variables used in this paper. 

Notation Explanation 

General Notations y i The actual (true) target feature value of the i ’th instance. 

ˆ y i The predicted target feature value of the i ’th instance (predicted by a regression model). 

n Total number of instances in the dataset. 

M Number of iterations in the GBT model. 

w i Weight assigned to the i’th instance (before/during an algorithm run). 

θ Learning rate of the GBT algorithm. 

Constraints Notations CM A matrix used to define the constraints for the instances. The matrix is of size ( n , 2), where n is the number of 

instances, and the first and second column values defines the lower and upper bounds (respectively) for the relevant 

instance. For unconstrained instances both lower and upper bounds are assigned with - ∞ and ∞ . 

˜ y i The constraint error of the i ’th instance. The error is measured based on the L 1 distance from the constraint interval 

and receives a non-negative value in any situation. 

C n Number of instances that are constrained in the learning dataset (i.e., instances in which LowerBound � = −∞ or 

UpperBound � = ∞ ). 

C η Dynamic Weight algorithm hyperparameter. 

C γ Constraint Loss algorithm hyperparameter. This notation is also used in the general definition of the problem’s 

objective as a general term regarding the importance given to constraints in the learning phase. 
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Fig. 1. An example of target attribute values with constraint intervals. 
effectively with a combination of various unnormalized feature

types. Different hyperparameters related to the algorithm have

been used; some are related to each tree that is built (e.g., maxi-

mum tree depth), whereas others are related to the overall model’s

configuration (e.g., numbers of trees to build). 

3.2. Other gradient boosting algorithms 

The algorithm we suggest can be applied to other boosting

methods, and not only GBT algorithm (which is in focus along

this paper). There are several modern implementation of Gradient

Boosting Machine (GBM) methods that gained popularity among

practitioners: 

1. XGBoost XGBoost (short for eXtreme Gradient Boosting)

Chen and Guestrin (2016) added several optimizations and re-

finements to the original GBM. The most important refinement

in XGBoost is that it adds a regularization component to the

loss function aimed at creating ensembles that are simpler and

more generative. 

2. LightGBM LightGBM is another gradient boosting tree imple-

mentation Ke et al. (2017) that introduces two new improve-

ments. The first is exclusive feature bundling which addresses

a training set with a large number of features. The idea is to

look for features that never take nonzero values simultane-

ously and combine them into a new single feature. The sec-

ond is gradient-based one-side sampling (GOSS) which aims to

address a training set with a large number of instances; in-

spired by the idea behind the AdaBoost algorithm, in each iter-

ation the training process focuses particularly on instances that

were misclassified by preceding models. Similarly, when mov-

ing from one tree to the next, instead of using all instances,

GOSS keeps all of the instances with large gradients but only a

random sample of instances with small gradients. 

3. CatBoost CatBoost is an open-source gradient boosting

tree library ( Prokhorenkova, Gusev, Vorobev, Dorogush, &

Gulin (2018) ). As the name implies, this package can effec-

tively handle categorical features. The simplest way to address

categorical features is to convert them into one-hot encoding,

namely having a dedicated binary variable for each category

value. However, when the cardinality of the categorical feature

is high, this encoding might run into various difficulties, includ-

ing: large memory requirements, extensive computational costs,

and difficulties that arise due to high-dimensional training data.

CatBoost converts each category value to a numerical value that

approximates the expected value of the target variable. To avoid

data leakage in the estimation of the target attribute, CatBoost

uses a random permutation of the training set. Then, given a
certain instance, it calculates the corresponding value by aver-

aging the target variable value of the preceding instances in the

permutation that share the same category value. In addition

to addressing categorical variables, CatBoost also mitigates the

bias problem that exists in the pointwise gradient estimates.

In a regular gradient boosting tree algorithm, the gradients are

estimated using the same data points that were used to train

the tree. This means that the trees predictions and the gradient

estimations are dependent. Moreover, the residuals estimated

on the training set have absolute values that are less than

those expected on unseen instances, i.e., the next tree that is

trained to predict the gradient, will tend to underestimate the

gradient. Thus, CatBoost also uses the abovementioned idea

of random permutation to address the bias issue. Specifically,

the gradient estimate for a certain instance is based on the

prediction learned using the preceding instances. 

. Problem definition 

.1. Problem settings 

Table 1 presents the general and constraint related notations

sed in this paper. The constraint regression problem we consider

eceives two types of input parameters: (1) a constraint matrix

 CM ), and (2) constraint hyperparameters. A CM is a table that con-

ains a row per instance with lower and upper constraint bound-

ries (limits). These limits are referred to as the Lower Bound and

pperBound . Each instance should have either a two-sided con-

traint or a one-sided constraint or be unconstrained; an exam-

le of these target attribute values with the various types of con-

traints can be seen in Fig. 1 , where seven of the ten instances

re constrained, and the constraint type (one or two-sided or un-

onstrained), as well as the interval size of each constraint can

e specified for each instance. We assume that the true target
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Algorithm 1: Dynamic Weight. 

Data : Explanatory feature matrix, X; Target attribute vector, y 

Parameters : M, θ, CM, C η
Result : Predictive model, F M 

(X ) 

1 F 0 (X ) = argmin 

ξ

1 
n 

∑ n 
i L (y i , ξ ) ; � Initialize model with a 

constant 
2 w = 

�
 1 ⇐⇒ w i = 1 , ∀ i ∈ n ; � Constant weight for all 

instances 
3 for m = 1 to M do 

4 r im 

= −[ 
∂L (y i ,F (X i )) 

∂F (X i ) 
] F (X )= F m −1(X ) 

= y i − F m −1 (X i ) ∀ i ∈ 

{ 1 . . . n } ; 
5 fit a tree base learner, h m 

(X, w ) , to the pseudo-residuals 

(i.e. r im 

); 

6 F m 

(X ) = F m −1 (X ) + θh m 

(X, w ) ; � Update the aggregated 
model 

7 re-weight w according to constraint’s satisfaction status: 

w i = {
w i constraints were satisfied in current iteration 

w i (1 + C η) otherwise 

8 end 

9 return F M 

(X ) 

Algorithm 2: Constraint Loss. 

Data : Explanatory features matrix, X; Target attribute vector, 

y 

Parameters : M, θ, CM, C γ
Result : Predictive model, F M 

(X ) 

1 F 0 (X ) = argmin 

ξ

1 
n 

∑ n 
i L (y i , ξ ) ; � Initialize model with a 

constant 
2 for m = 1 to M do 

3 r im 

= −[ 
∂L (y i ,F (X i ) ,CM(i )) 

∂F (X i ) 
] F (X )= F m −1(X ) 

∀ i ∈ { 1 . . . n } 
where: 

L (y i , F (X i ) , CM(i )) = 

RegressionError ︷ ︸︸ ︷ 
(y i − ˆ y i ) 

2 + 

Const raint Error ︷ ︸︸ ︷ 
C γ f ( ̃  y i ) ; 

4 fit a tree base learner, h m 

(X ) , to the pseudo-residuals (i.e. 

r im 

); 

5 F m 

(X ) = F m −1 (X ) + θh m 

(X ) ; � Update the aggregated 
model 

6 end 

7 return F M 

(X ) 
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ttribute value of each instance is within the range specified in the

atrix. 

.2. Problem objective 

The problem which is the focus of this paper is defined as a

eneralization of the standard regression problem, in which an ad-

itional problem objective comes into play along with the regular

bjective of the standard regression problem (the mean squared

rror in standard cases). The measure of the new problem ob-

ective is to minimize Eq. (1) ; the equation reflects the idea of

plitting up the new objective measure into two parts: the reg-

lar regression measure and a new constraint measure which is

eighted based on the C γ parameter. In cases in which C γ = 0 ,

he problem objective’s measure represents a regular regression

ase. C n represents the number of instances that are constrained

n the learning dataset (i.e., instances in which Lower Bound � = −∞
r Upper Bound � = ∞ ). ˜ y i represents the constraint error of the i ′ th

nstance and receives a non-negative value in any situation. In

q. (1) , f can be any function applied on ˜ y i . 

1 

n 

n ∑ 

i 

(y i − ˆ y i ) 
2 

 ︷︷ ︸ 
Regression Error 

+ C γ
1 

C n 

C n ∑ 

i 

f ( ̃  y i ) 

︸ ︷︷ ︸ 
Constraint Error 

(1) 

In our research we focus on two such functions, as can be seen

n Eqs. (2) and (3) . Both functions are equal to zero in cases in

hich the constraint of the i ′ th instance is satisfied. Eq. (2) is

quivalent to the L 1 − norm error, and Eq. (3) is a step function

hich receives the value of one in any case in which the constraint

s not satisfied. 

bsolute Value: f (x ) � | x | (2)

ndicator: f (x ) = 1 x> 0 � 

{
1 , x > 0 

0 , otherwise 
(3)

. Algorithms 

As mentioned earlier, we suggest a solution which uses the GBT

lgorithm, taking advantage of two of the algorithm’s character-

stics - (i) iterative progress towards convergence, and (ii) gradi-

nt direction steps. We present two algorithms, each of which ad-

resses the constraints differently. Both algorithms are based on

he GBT model; the algorithms’ pseudo code can be found at the

nd of this section. The hyperparameter θ refers to the learning

ate, M refers to the number of algorithm iterations, CM refers

o the constraint matrix, and F m 

( X ) refers to the model suggested

n the m’th iteration. In both of the algorithms r im 

represents the

seudo-residuals according to the loss ( L ) function. In the Dynamic

eight algorithm ( Algorithm 1 ), this is the existing MSE loss func-

ion, whereas in the Constraint Loss algorithm ( Algorithm 2 ) this

s based on a tailor-made loss function which takes into account

he constraints’ dissatisfaction level. The f and ˜ y i notations used in

lgorithm 2 are based on the definitions mentioned in Table 1 . 

The Dynamic Weight algorithm takes advantage of the iterative

orking method of GBT and updates instances’ weight (i.e., w i ) af-

er each iteration (line 7 in the algorithm below), based on the

onstraints’ status. In cases in which there is no constraint, the

nstance’s weight should not be changed in any step of the algo-

ithm. Such a dynamic weight concept is based on the AdaBoost

lgorithm ( Freund & Schapire, 1997 ), however this concept is ap-

lied within the context of constraint satisfaction. In each iteration

 decision is made regarding whether to change each instance’s

eight according to the constraint satisfaction’s binary status. The
yper-parameter that controls the change rate is C η , which is ex-

ected to be a number in the (0, 1) range and is analogous to the

earning rate parameter in the GBT algorithm. 

The Constraint Loss algorithm takes advantage of GBT’s gradient

tep framework, and tunes the gradient to include constraints in

ach iteration (line 3 in the algorithm below). The constraint gradi-

nt will not be changed for cases in which there are no constraints

rovided. The hyperparameter that controls the importance pro-

ortion given to the constraint gradient and the standard regres-

ion gradient is C γ and it is expected to be a number in the (0,

 ) range. As can be seen in the expansion of line 3, the loss func-

ion related to the constraints is generally defined as f ( ̃  y i ) . Two

xamples of such functions can be seen in Section 4.2 . We used

he Absolute Value function in our study, since it is widely used as a

oss function, and its gradient can easily be computed. Such a loss

unction is analogous to the L 1 loss function in regression problems

which is usually defined as the LAD problem and is discussed in

arula & Wellington (1982) ). 
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3 https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring . 
Note that the loss function used by the Dynamic Weight algo-

rithm is based on the Indicator function (shown in Eq. (3) ), which

is not a continuous loss function. Since the derivative of the Indica-

tor function cannot be computed (and hence the gradient step can-

not be modified), we update the model by increasing the weight

of instances that are not satisfying their constraint (see line 7 in

Algorithm 1 ). In other cases (i.e., unconstrained instances, or in-

stances that satisfy their constraints), the model is updated accord-

ing to the original gradient steps of the GBT algorithm (see line

4 in Algorithm 1 ). The Constraint Loss algorithm is based on the

Absolute Value function (shown in Eq. (2) ). In this case, since the

Absolute Value function is continuous and its derivative can be ob-

tained, we use the updated loss function along the gradient steps

instead of the original gradient steps of the GBT algorithm (see line

3 in Algorithm 2 ). 

Except for these main changes, the algorithms follow the stan-

dard flow of a GBT algorithm. In this sense, the suggested solution

wraps a given model and can be modified to work with any iter-

ative and/or gradient descent framework. Constraint hyperparame-

ters are used to tune the algorithm with regard to the constraints’

status (see Section 7.1 for further details). Since the suggested so-

lution wraps the GBT algorithm, there are additional hyperparam-

eters related to the GBT model (e.g., tree depth, learning rate) that

must be defined as well. 

6. Experimental process 

In order to validate the added value of the new algorithms,

we defined the following evaluation metrics. Later in this section

we describe the diverse datasets used and the experimental setup.

All code developed as part of the research can be found in the

project’s GitHub open repository. 2 

6.1. Evaluation metrics 

Based on the definitions presented in Section 4.1 and Table 1 ,

we used the following metrics in order to measure the perfor-

mance of the algorithms after adding the constraints: (a) MSE

� 

1 
n 

∑ n 
i (y i − ˆ y i ) 

2 (b) CMSE � 

1 
C n 

∑ C n 
i 

˜ y i (c) CER � 

1 
C n 

∑ C n 
i 
1 ˜ y i > 0 

. 

A standard way of evaluating any regression solution is the MSE

(mean squared error) which does not give any significance to con-

straints. CMSE (constraint mean squared error) and CER (constraint

error rate), new evaluation measures developed for this research,

take constraints into account, but each one evaluates the constraint

satisfaction differently - either based on a more continuous mea-

surement ability approach or a binary measurement ability ap-

proach (respectively). As mentioned in Section 5, Algorithm 2 is

more suitable for optimizing the CMSE (i.e., metric (b)) because

it optimizes the solution using a continuous gradient descent ap-

proach. Algorithm 1 is more suitable for optimizing the CER met-

ric (i.e., metric (c)) as it examines, in a binary way, whether each

constraint was satisfied or not. A high degree of correlation is ex-

pected to be found between the CMSE and the CER metrics, and

a clear trade-off between optimizing the MSE metric (i.e., metric

(a)) and the other two metrics will logically be found. The magni-

tude of the trade-off between the measures depends largely on the

constraints’ tightness and how many instances are actually con-

strained. We expect to see a decrease in the MSE measure in cases

in which there are very tight constraints on a relative large pro-

portion of the population. 
2 https://github.com/abrahami/Constraint-Learning . a
.2. Datasets 

.2.1. Parkinson’s dataset 

This dataset, which consists of 5875 instances and 25 explana-

ory features, was provided from UCI. 3 The dataset is composed of

 range of biomedical voice measurements from 42 people with

arly-stage Parkinson’s disease recruited to a six-month trial of a

elemonitoring device for remote symptom progression monitor-

ng. The target attribute is the UPDRS score, which is used to fol-

ow the longitudinal course of Parkinson’s disease. We constrained

he target attribute so that high values would be better predicted,

y setting two-sided constraints on a subpopulation with the high-

st target values. This is based on the assumption that the output

odel should be more sensitive to very high UPDRS score values,

ince a high score reflects a progressive disease status and deserves

igher treatment priority. 

.2.2. Industry dataset 

This dataset, which consists of 25,150 instances and 813 ex-

lanatory features, comes from a real use case of a very large in-

ustrial company. As stated in Section 1 , the problem definition is

o predict, for each instance, the power consumption value in the

ery early phases of the production process. For business reasons,

nstances with high target attribute values are much more impor-

ant than others, and overprediction is preferred for this subset of

he population. Hence, we constrained the target attribute so that

igh values would be over predicted (one-sided constraints). 

.2.3. Flight dataset 

This dataset, which consists of 272,520 instances and 35 ex-

lanatory features, comes from the OpenSky Network Project 4 and

ontains technical flight information (e.g., altitude, speed). The data

sed from this project focuses on predicting the altitude of the air-

lane, given other features, in order to detect anomalies and cases

f unreliable reports. Using this dataset, we constrained the tar-

et attribute (i.e., altitude) with a two-sided constraint, so that low

alues would be better predicted. This is based on the assumption

hat an unreliable report is much more destructive during landing

r takeoff than it is during cruising. 

.2.4. House sales dataset 

This dataset, which consists of 21,613 instances and 18 explana-

ory features, comes from Kaggle 5 - a platform for predictive and

nalytical model competitions. The dataset was introduced to Kag-

le users in 2016, and it consists of the prices of house sold in

ing County, Washington (USA), which includes the city of Seat-

le. The dataset includes homes sold between May 2014 and May

015, and the original purpose of the competition was to predict

nal sale price of the house. We used this dataset as an analogy to

 case involving multiple bids, where for each bid the highest of-

er wins everything. In such a case, underprediction leads to losing

he bid offer, and hence a one-sided constraint has to be applied

n specific items which are of greater interest (i.e., in this case we

pplied the constraint on houses with the highest or lowest target

alues). 

.2.5. CTSlices Dataset 

This dataset, which consists of 53,500 instances and 386 ex-

lanatory features, comes from UCI. 6 The dataset is composed of
4 https://opensky-network.org/ . 
5 https://www.kaggle.com/harlfoxem/housesalesprediction . 
6 https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+ 

xis . 

https://github.com/abrahami/Constraint-Learning
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
https://opensky-network.org/
https://www.kaggle.com/harlfoxem/housesalesprediction
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
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Fig. 2. Constraints’ hyperparameter tuning. The optimization process was performed on a different parameter (e.g., C η in the Dynamic Weight algorithm) for each model. 

Each point represents an algorithm’s result with a different value for the constraint’s hyperparameter. A star signifies the best value (the selected value), when taking the 

trade-off between the standard MSE measure and the constraint’s related measure into consideration. In some cases overfitting was observed. 
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T images from 74 individuals. The set of explanatory features con-

ist of two types of features: (a) features describing the location of

one structures in the image, and (b) features describing air inclu-

ions inside the patient’s body. The target attribute is the relative

ocation of the CT slice on the axial axis of the human body. We

onstrained the target attribute so that high values would be bet-

er predicted, by setting two-sided constraints on a subpopulation

hat has the highest target value. 

.3. Experimental setup 

Each dataset was used twice, with different constraint config-

rations. In each of the experiments conducted, we used one of

he four datasets and applied constraints to a specific subpopu-

ation within this dataset based on the target attribute value, for

xample, constraining the top 10% of the target value instances.

he constraint type (one-sided, two-sided or unconstrained) was

et according to the use case. The constraint interval size, which

lso reflects the constraint’s difficulty, was tested on a few val-

es for each dataset. Regular cross-validation techniques were used

uring the experiments, and all of the results presented below are

ased on unseen test datasets. Each measure reported is the av-

rage value over five random iterations. For each dataset, hyper-

arameters related to the GBT model (e.g., maximum tree depth,

umber of iterations) were fixed, so that the results of the experi-

ents would be comparable. The results of each experiment were

ompared to the following three baselines: 

1. Standard GBT algorithm – a regular GBT algorithm, without tak-

ing constraints into consideration. 

2. Constant Weight baseline – a GBT algorithm in which con-

strained instances are given a constant weight which, of course,

is much higher than the unconstrained instances. 

3. Smart Weight baseline – a GBT algorithm in which constrained

instances are given a weight according to the tightness of

the constraint which is always higher than the unconstrained

instances. 

. Experimental results 

.1. Constraint hyperparameter tuning process 

Although GBT hyperparameters were fixed for each dataset

based on a preliminary process we performed for each dataset

n order to find the most suitable GBT hyperparameters), the con-

traints’ hyperparameters were still optimized using a grid search
ethod process. In the Dynamic Weight and the Constraint Loss

lgorithms we optimized the C η and the C γ , respectively, whereas

e optimized the weight parameter in the Constant Weight base-

ine. During this process we used data that was held out from the

riginal dataset, used for evaluation purposes. Fig. 2 shows two ex-

mples of this process, where the results in the figure are based on

nseen data taken from the original dataset. The best hyperparam-

ter for each algorithm (marked by a star in Fig. 2 ) was selected

ased on the criteria of minimizing the CER, and having the least

ffect possible on the MSE. 

.2. Parkinson’s dataset results 

The two constraint configurations examined are: constraining

he top 20% of the target value instances, with a constraint inter-

al size equal to 1% of the target attribute value (i.e., configuration

 ), and constraining the top 30% of the target value instances, with

 constraint interval size equal to 2% of the target attribute value

i.e., configuration B ). As can be seen in Table 2 , the Constraint Loss

lgorithm outperforms all of the other algorithms in both configu-

ations, maintaining a very low MSE value and relatively low val-

es of the other constraint measures. Although the CER and CMSE

alues in configuration A are not the lowest achieved, the balance

etween all of the measures of interest suggested by this algorithm

s the most worthwhile compered to other methods. 

.3. Industry dataset results 

As explained in Section 6.2 , only high target value instances

eeded to be constrained (one-sided). The two constraint config-

rations examined are: constraining the top 5% of the target value

nstances with a constraint interval size equal to 10% of the target

ttribute value (i.e., configuration A ), and constraining the top 5%

f the target value instances, with a constraint interval size equal

o 5% of the target attribute value (i.e., configuration B ). As can

e seen in Table 3 , compared to all of the other algorithms, the

ynamic Weight algorithm achieves the minimal values for both

onstraint measures. Although the MSE measure is affected in this

ase, the balance between all of the measures of interest obtained

y this algorithm is the most impressive one compered to other

ethods. 
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Table 2 

Parkinson’s dataset - average and standard deviation results. 

Algorithm Configuration A Configuration B 

MSE CER CMSE MSE CER CMSE 

Standard GBT 4.65 ± 0.22 0.88 ± 0.023 7.67 ± 0.79 4.65 ± 0.22 0.74 ± 0.021 5.20 ± 0.48 

Constant Weight 58.61 ± 3.54 0.58 ± 0.038 0.47 ± 0.37 57.11 ± 3.46 0.44 ± 0.023 0.43 ± 0.064 

Smart Weight 6.77 ± 0.22 0.80 ± 0.036 1.38 ± 0.28 5.10 ± 0.21 0.65 ± 0.026 2.21 ± 0.29 

Dynamic Weight 42.87 ± 3.82 0.55 ± 0.05 0.30 ± 0.16 60.25 ± 2.64 0.46 ± 0.016 0.33 ± 0.033 

Constraint Loss 3.76 ± 0.29 0.59 ± 0.062 1.88 ± 0.25 3.01 ± 0.26 0.40 ± 0.023 0.32 ± 0.006 

Table 3 

Industry dataset results - average and standard deviation results. 

Algorithm Configuration A Configuration B 

MSE CER CMSE MSE CER CMSE 

Standard GBT 122.6 ± 4.98 0.75 ± 0.016 416.28 ± 69.38 125.66 ± 4.94 0.66 ± 0.012 371.27 ± 45.73 

Constant Weight 256.03 ± 6.65 0.59 ± 0.02 221.04 ± 68.11 313.17 ± 10.47 0.55 ± 0.008 235.09 ± 43.6 

Smart Weight 127.22 ± 4.18 0.68 ± 0.032 329.06 ± 60.83 125.92 ± 5.54 0.66 ± 0.008 370.82 ± 43.96 

Dynamic Weight 128.92 ± 4.5 0.62 ± 0.014 264.55 ± 49.67 140.58 ± 6.85 0.5 ± 0.011 221.4 9 ± 43.6 8 

Constraint Loss 126.56 ± 4.68 0.58 ± 0.018 269.23 ± 44.63 139.76 ± 7.57 0.45 ± 0.016 204.15 ± 34.79 

Table 4 

Flight dataset - average and standard deviation results. 

Algorithm Configuration A Configuration B 

MSE CER CMSE MSE CER CMSE 

Standard GBT 64.01 ± 2.95 e3 0.77 ± 0.008 114.75 ± 19.13 e3 63.92 ± 2.96 e3 0.64 ± 0.008 83.66 ± 8.12 e3 

Constant Weight 107.77 ± 4.84 e3 0.51 ± 0.014 69.89 ± 16.32 e3 141.11 ± 8.15 e3 0.40 ± 0.001 44.77 ± 11.88 e3 

Smart Weight 64.62 ± 3.9 e3 0.77 ± 0.007 119.80 ± 30.05 e3 64.66 ± 3.8 e3 0.64 ± 0.007 86.84 ± 14.51 e3 

Dynamic Weight 100.43 ± 2.68 e3 0.44 ± 0.004 88.54 ± 46.36 e3 145.02 ± 6.72 e3 0.33 ± 0.005 52.07 ± 14.03 e3 

Constraint Loss 61.87 ± 1.48e3 0.68 ± 0.005 102.16 ± 30.62 e3 85.97 ± 4.84 e3 0.45 ± 0.011 65.70 ± 11.41 e3 

Table 5 

House Sales dataset - average and standard deviation results. 

Algorithm Configuration A Configuration B 

MSE CER CMSE MSE CER CMSE 

Standard GBT 13.79 ± 0.68 e9 0.64 ± 0.019 35.54 ± 3.96 e9 13.79 ± 0.72 e9 0.51 ± 0.007 0.928 ± 0.17 e9 

Constant Weight 14.61 ± 1.15 e9 0.59 ± 0.013 34.66 ± 6.46 e9 14.64 ± 0.15 e9 0.55 ± 0.008 0.8 ± 0.15 e9 

Smart Weight 13.86 ± 0.76 e9 0.64 ± 0.02 35.8 ± 0.45 e9 13.76 ± 0.62 e9 0.51 ± 0.008 0.92 ± 0.15 e9 

Dynamic Weight 22.03 ± 1.37 e9 0.42 ± 0.01 27.09 ± 5.56 e9 17.84 ± 0.85 e9 0.43 ± 0.008 0.7 ± 0.16 e9 

Constraint Loss 13.76 ± 0.73 e9 0.64 ± 0.02 35.42 ± 3.84 e9 13.79 ± 0.78 e9 0.51 ± 0.011 0.92 ± 0.17 e9 
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7.4. Flight dataset results 

The two constraint configurations examined are constraining

the bottom 5% of the target value instances, with a constraint

interval size equal to 5% of the target attribute value (i.e., con-

figuration A ) and constraining the bottom 10% of the target value

instances, with a constraint interval size equal to 5% of the target

attribute value (i.e., configuration B ). The results presented in

Table 4 show that both the Dynamic Weight algorithm and the

Constant Weight baseline provide impressive results. The Dynamic

Weight algorithm shows the best CER results, while the Constant

Weight baseline is better when focusing on the CMSE. The CMSE

measure suffers from very high variance values for all of the algo-

rithms, a fact which leads us to focus and rely on the MSE and CER

measures. 

7.5. House sales dataset results 

As explained in Section 6.2 , constraints in this use case are one-

sided (as illustrated in Fig. 1 for the seventh instance). The two

constraint configurations examined are: constraining the top 20%

target value instances, with a constraint interval size equal to 30%
f the target attribute value (i.e., configuration A ), and constrain-

ng the bottom 20% of the target value instances, with a constraint

nterval size equal to 30% of the target attribute value (i.e., config-

ration B ). As can be seen in Table 5 , compared to all of the other

lgorithms, the Dynamic Weight algorithm achieves the minimal

alues for both constraint measures. Although the MSE measure is

ighly affected when using the Dynamic Weight algorithm in this

ase, no other algorithm succeeded in achieving as impressive con-

traint measures as this algorithm. 

.6. CTSlices Dataset results 

The two constraint configurations examined are constraining

he top 10% of the target value instances, with a constraint inter-

al size equal to 5% of the target attribute value (i.e., configura-

ion A ), and constraining the top 20% of the target value instances,

ith a constraint interval size equal to 5% of the target attribute

alue (i.e., configuration B ). As can be seen in Table 6 , compared to

ll of other algorithms, the Constraint Loss algorithm achieves the

inimal CER values in both configurations. The CMSE gets its min-

mal value with the Dynamic Weight or the Constraint Loss algo-

ithms (depends on the configuration). Over all, the Constraint Loss
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Table 6 

CTSlices dataset - average and standard deviation results. 

Algorithm Configuration A Configuration B 

MSE CER CMSE MSE CER CMSE 

Standard GBT 76.76 ± 0.35 0.91 ± 0.01 132.13 ± 7.01 76.76 ± 0.35 0.77 ± 0.007 92.1 ± 3.5 

Constant Weight 81.23 ± 1.45 0.34 ± 0.02 6.43 ± 0.72 84.1 ± 1.3 0.5 ± 0.005 15.16 ± 0.98 

Smart Weight 71.52 ± 1.11 0.7 ± 0.001 64.78 ± 2.81 76.2 ± 0.38 0.766 ± 0.005 88.9 ± 3.27 

Dynamic Weight 111.21 ± 3.25 0.32 ± 0.01 3.63 ± 0.21 75.4 ± 0.47 0.74 ± 0.47 79.38 ± 3.24 

Constraint Loss 84.52 ± 2.39 0.21 ± 0.03 3.97 ± 1.5 81.9 ± 1.4 0.23 ± 0.02 3.39 ± 0.68 

Fig. 3. Sampling method compared with the Dynamic Weight and the Constraint Loss algorithms. Blue points represent different sampling percentage of unconstrained 

instances. In all graphs, left most blue point represents the smallest sampling percentage (i.e., 10% of the unconstrained instances). 
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Fig. 4. Target attribute distribution of all datasets. The y -axis represents density, and the standard deviation of each attribute is also provided. The Constraint Loss algorithm 

performs better and manages to converge in cases when the target attribute distribution is not too long tailed and the standard deviation is relatively low. 
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algorithm yields the most impressive trade off between constraint

measures and the MSE measure, with an MSE measure minimally

affected in both configurations. 

7.7. Comparing the proposed method with a sampling approach 

Another method that can be considered as a possible solution

for the constraint regression problem is based on ideas coming

from the GOSS method implemented in the lightGMB algorithm

(see Section 3 ). Such sampling approach implies that instead of

taking the whole training data as input, we select a data sub-

set. Since the constrained instances are the most important, all

of them are selected. The other unconstrained instances are ran-

domly under-sampled. The percentage of unconstrained instances

which are sampled is configurable. Fig. 3 shows a comparison of

the sampling method versus the two algorithms suggested in the

paper. Ten different under-sam pling percentages were tested, with

an equal 10% sampling change in the [0%, 100%] interval. 

The trade-off comparison is based on the MSE measure ver-

sus the CMSE measure. The blue points in the graph represent

the sampling approach, where each point is a result of a different

sampling percentage value. These results are compared with the

Constraint Loss algorithm as well as with the Dynamic Weight al-

gorithm. As before, the results shown are based on a 5-fold cross

validation process. As can be seen, over all datasets (besides the

Flight dataset) at least one of the algorithms suggested in this pa-

per outperforms the sampling approach and suggest a better trade-

off between the MSE and the CMSE measures. Note that in some

cases the Dynamic Weight or the Constraint Loss algorithm result

is not shown in the graph since it reached a high MSE value be-

yond the graph scale. 
. Analysis and summary of results 

In most of the datasets and configurations examined, one of the

wo suggested algorithms always outperforms the three baselines.

ne exception to this statement is when focusing on the CMSE

easure in the Flight dataset (note that the standard deviation of

his measure is very high with this dataset). The Dynamic Weight

lgorithm performs well in most situations and demonstrates im-

roved performance compared to the three baselines, in terms of

onstraint measures. As we have seen in our experiments, this al-

orithm can lead to very good constraint measures, but this always

nvolves a clear trade-off with other standard regression measures

e.g., MSE). This is in contrast to the Constraint Loss algorithm,

hich clearly improves constraint measures, but only up to a

ertain point. Even when trying to increase the C γ parameter (i.e.,

uring the constraint hyperparameter tuning process, as explained

n Section 7.1 ), constraint measures were optimized up to a certain

oint which usually was higher compared to the Dynamic Weight

lgorithm. The Dynamic Weight algorithm might also suffer from a

igh standard deviation in all of the measures. It still outperforms

he Constant Weight baseline and demonstrates a better trade-off

etween the MSE and constraint related measures in all cases. We

nalyzed the Constraint Loss algorithm further, in order to identify

ases in which the algorithm is expected to perform very well. We

ound that the Constraint Loss algorithm achieves impressive re-

ults in situations in which the basic algorithm performs well (i.e.,

ases when the Standard GBT algorithm performs well with regard

o the MSE measure). Another phenomenon we observed regarding

he Constraint Loss algorithm is the fact that it achieves impres-

ive results in cases in which the target attribute (i.e., predicted

 ) doesn’t have a very high standard deviation and achieves even
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Fig. 5. True values ( x -axis) and predicted values ( y -axis) for some of the algorithms. Ideally, data points would have been laid on the 45 ◦ imaginary line. The data points are 

based on the Parkinson’s Dataset results, configuration A. As can be seen, the Constraint Loss algorithm achieves the best performance in this setting. 
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etter results when the attribute is well distributed (i.e., close to

niform or normal distribution), as can be concluded from the

raphs presented in Fig. 4 along with the results discussed in

ection 7 . 

Another interesting analysis can be seen in Fig. 5 which em-

hasizes the differences between some of the algorithms and the

rade-off between constraint measures and regular measures. As

hown, the two suggested algorithms predict the constrained in-

tances well, but the Dynamic Weight algorithm significantly over-

redicts the other instances while the Constraint Loss algorithm

oes not. 

. Discussion 

Based on our experiment results we can conclude that the pro-

osed algorithms is able to model the constraints and ensure that

hey are satisfied. This indicates a very important property of the

ew algorithms – the ability to induce a model that can provide a

igh level of assurance in the prediction of important/critical cases.

he new GBT-based algorithms presented provide the basis for

he implementation of additional new regression algorithms (e.g.,

ased on deep learning) that can be further adapted to specific

roblems and use-cases. While according to the proposed method,

he constraints are defined for each instance individually, such con-

traints can eventually be derived from a more general and broad

efinition of the constraint on a subpopulation of the instances.

inally, the proposed method allows adjusting the trade-off be-

ween the general regression error and constraint satisfaction er-

or through the use of a single hyperparameter. The main strength

nd the implications of this research is in introducing a new class

f regression problems in the form of instance level constraints,

hich also allows evaluating prediction models according to a new

easure (i.e., constraint satisfaction). The induced model is able

o provide an accurate prediction for the constrained cases with

 high level of assurance. In our evaluation we also identified the

ollowing limitations of the approach. First, in some cases, a trade-

ff between general regression error and the constraint satisfaction

rror may exist. Furthermore, we expect that in cases where the

onstraints are defined for a large sub-population it will be diffi-

ult for the algorithm to induce a model that satisfies both contra-

icting requirements (a low regression error while complying with

he constraints). In such a case, the resulting model will mainly

epend on the new hyper parameter (i.e., C η or C γ ). Second,

lthough the adjustment of the trade-off between the general re-

ression error and constraint satisfaction error is made through a

ingle new hyperparameter, it still needs to be determined and

ptimized for each use case. Finally, the constraints need to be

efined for the relevant instances. In some use cases, those con-

traints can be automatically derived or computed for a large set

f instances through a more general rule or constraint (e.g., assign

onstraint c to all blood pressure samples that are approximately

alue x ). 
0. Conclusions and future work 

In this paper, we presented a constraint learning framework

nd applied it to regression problems. We presented two algo-

ithms, both of which wrap the GBT algorithm and leverage the

BT’s unique characteristics in order to satisfy the given con-

traints. Based on the experiments conducted, it is clear that the

uggested algorithms provide added value in terms of satisfying

he constraints. Directing the algorithm so that it satisfies con-

traints might negatively affect other measures (e.g., MSE), as was

learly seen in the Dynamic Weight algorithm with all of datasets.

he trade-off between the general regression measures (such as

he MSE) and newly proposed constraint measures is different for

he various datasets and constraint settings. Therefore, balancing

hese two contradicting measures and finding the optimal setup

ccording to the requirements of the given use case can be con-

rolled by adjusting the constraints’ hyperparameters. 

Future research possibilities include the following: 

• Hybrid approach – The two new algorithms were tested inde-

pendently. In future work, a hybrid approach based on combin-

ing the two algorithms might lead to better results, as has been

observed in many other machine learning algorithms. 
• Semi-supervised learning - We only applied the new methods to

fully supervised problems. In future work, the given constraints

can be converted and used as our new target. In such problems

the new target attribute will become an interval of values, and

the algorithm’s aim would be to predict the continuous target

attribute as close to each instance interval as possible. 
• Different constraint settings – Currently, the constraints used

relate to the target attribute and are instance dependent. In

future work, another useful constraint setting can be studied

which involves constraining pairs of instances (e.g., the pre-

dicted value of instance x must be higher than instance y ’s pre-

dicted value). This is a much different setting, than the setting

investigated in the current study since: (a) the problem be-

comes instance dependent, and (b) the constraint’s satisfaction

goal differs from the typical regression goal. 
• Different algorithm usage – In the scope of the current research,

we only used GBT as a prediction algorithm, and we wrapped

it in such a way that takes constraints into account. In future

work, we can use and wrap neural network algorithms which

would work well for the type of modifications we performed,

since neural network algorithms are iterative and gradients cal-

culated each iteration. 

ppendix A. Related Work Summary Table 

Table A.7 
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Table A.7 

Related Work Summary. 

Paper Description Goal ML task Constraints Defined Method Used Comparison to our work 

Tibshirani (1996) , 

Hoerl and 

Kennard (1970) , 

Zhou et al. (2011) 

Constraint on the learning 

algorithm parameters 

Reducing hypothesis search 

space (and thus learning 

time) and avoid overfitting 

Constraints Regression Constraining the 

learning algorithm 

parameters 

Ridge, lasso elastic net 

regression 

Different goal: efficient training process 

Different constraint type: constraints are not 

related to the instances’ target feature but 

rather to the hyperparameters of the 

algorithm 

Chang et al. (2008) , 

Yu et al. (2007) 

Learning with prior 

knowledge 

Reducing hypothesis search 

space (and thus learning 

time) by adding 

information to the 

problems setting in the 

form of prior knowledge 

Semi/fully supervised 

classification 

No constraints are 

defined 

A framework for 

various algorithms is 

suggested 

Different goal: efficient training process 

Different constraint type: prior knowledge 

about the domain is used but not in the 

form of constraint Different ML task: focuses 

on classification (and not on regression 

problems) 

Klastorin and 

Watts (1981) , 

DeSarbo and 

Mahajan (1984) 

Associated with the classes 

themselves (e.g., the size of 

a specific class must be 

below 100) 

Providing a classification 

solution which takes 

constraints related to the 

classes suggested by the 

solution into account via 

clustering techniques 

Classification Size of classes and 

relations between two 

classes sizes are mainly 

the constraints being 

used 

CONCLUS (Constrained 

Clustering) 

Different constraint type: constraints are not 

instance level, but rather related to the 

solution suggested by the algorithm (e.g., 

size of each class and not necessarily the 

prediction for each instance) Different ML 

task: focuses on classification (and not on 

regression problems) 

Nguyen (2010) , 

Zhang and Yan (2007) , 

Nguyen and 

Caruana (2008) 

Input dataset contains 

partly supervised 

information that indicates 

whether (some) pairs of 

instances are associated 

with the same class or not 

Solving a classification 

problem is in some cases 

an indication whether pairs 

of instances are associated 

with the same class or not 

is provided; this can be 

taken into account during 

the learning process 

Semi supervised 

classification 

Pairs of instances 

must/must not be 

classified to the same 

class 

PCSVM (Pairwise 

Constraints SVM) 

Different constraint type: constraints are related 

to pairs of instances (and not to individual 

instances) Different ML task: focuses on 

classification (and not on regression 

problems) 

Zhao (2008) , 

Ting (2002) , 

Zadrozny, Langford, and 

Abe (2003) 

Cost sensitive learning Inducing a cost sensitive 

model (prior to modeling 

or during model learning) 

by assigning appropriate 

weights to different 

training instances 

Classification No constraints are 

defined; cost function 

is being used 

Assigning weights to 

instances (or 

duplicating instances) 

and then using 

different types of 

classification models 

Different goal: cost sensitive learning Different 

constraint type: a cost function in the form of 

instance level weights is used (and not a 

specific constraint on the target attribute) 

Different ML task: focuses on classification 

(and not on regression problems) 

( continued on next page ) 
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Table A.7 ( continued ) 

Paper Description Goal ML task Constraints Defined Method Used Comparison to our work 

Zhao et al. (2011) , 

Koenker (2005) 

Cost sensitive learning Inducing a cost sensitive 

model by defining a cost 

function which takes into 

account asymmetric cost in 

cases of over/under 

prediction 

Regression No constraints are 

defined; cost function 

is being used 

Apply cost function to 

regression model; least 

squares error model 

with cost-sensitive 

aspects is introduced 

Different goal: cost sensitive learning Different 

constraint type: an asymmetric cost function 

which takes into account the over/under 

prediction; the cost function is generic and 

applied to all samples in the learning 

dataset. The method restrict the cost 

function to be convex (as opposed to our 

constraint type which can be defined to each 

sample individually) 

Coons (1978) Focusing on reliable 

instances (hard-points) 

Creating a more reliable 

and accurate model 

Regression Constraints are applied 

on specific reliable 

instances, so the 

regression will 

perfectly predict those 

New implementation of 

a regression problem 

based on closed 

algebraic solution 

Different goal: creating a more reliable model 

using hard-points) Different constraint type: 

constraints, as we define, are not necessarily 

hard-constraints Different method: 

implemented based on a closed algebraic 

solution,while we use arithmetic-based 

solution 

Harrell (2015) Survival analysis related to 

regression problems 

Inducing a regression 

model where the values of 

the target attribute of some 

of the instances indicate 

the upper/lower bound of 

the real value (due to the 

fact that the real value is 

unknown/determined at a 

future time) 

Regression Upper or lower bound 

on the true value of 

the target attribute is 

defined 

Survival analysis 

techniques 

Different goal: learning when partial 

information about the true values of the 

target attribute is available; in our case, the 

true value is fully known Different constraint 

type: only an upper or lower bound is 

available and reflects the actual true value of 

the target attribute(and not a desired value) 
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